If $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0),$ then show that $a, b, c$ and $d$ are in $G.P.$
It is given that,
$\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}$
$\Rightarrow(a+b x)(b-c x)=(b+c x)(a-b x)$
$\Rightarrow a b-a c x+b^{2} x-b c x^{2}=a b-b^{2} x+a c x-b c x^{2}$
$\Rightarrow 2 b^{2} x=2 a c x$
$\Rightarrow b^{2}=a c$
$\Rightarrow \frac{b}{a}=\frac{c}{b}$ .........$(1)$
Also, $\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}$
$\Rightarrow(b+c x)(c-d x)=(b-c x)(c+d x)$
$\Rightarrow b c-b d x+c^{2} x-c d x^{2}=b c+b d x-c^{2} x-c d x^{2}$
$\Rightarrow 2 c^{2} x=2 b d x$
$\Rightarrow c^{2}=b d$
$\Rightarrow \frac{c}{d}=\frac{d}{c}$ .........$(2)$
From $(1)$ and $(2),$ we obtain
$\frac{b}{a}=\frac{c}{b}=\frac{d}{c}$
Thus, $a, b, c$ and $d$ are in $G.P.$
If sum of infinite terms of a $G.P.$ is $3$ and sum of squares of its terms is $3$, then its first term and common ratio are
If in a $G.P.$ of $64$ terms, the sum of all the terms is $7$ times the sum of the odd terms of the $G.P,$ then the common ratio of the $G.P$. is equal to
The $G.M.$ of the numbers $3,\,{3^2},\,{3^3},....,\,{3^n}$ is
Given a $G.P.$ with $a=729$ and $7^{\text {th }}$ term $64,$ determine $S_{7}$
The value of $\overline {0.037} $ where, $\overline {.037} $ stands for the number $0.037037037........$ is