જો $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0),$ તો સાબિત કરો કે $a,b,c$ અને $d$ સમગુણોત્તર શ્રેણીમાં છે. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that,

$\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}$

$\Rightarrow(a+b x)(b-c x)=(b+c x)(a-b x)$

$\Rightarrow a b-a c x+b^{2} x-b c x^{2}=a b-b^{2} x+a c x-b c x^{2}$

$\Rightarrow 2 b^{2} x=2 a c x$

$\Rightarrow b^{2}=a c$

$\Rightarrow \frac{b}{a}=\frac{c}{b}$          .........$(1)$

Also, $\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}$

$\Rightarrow(b+c x)(c-d x)=(b-c x)(c+d x)$

$\Rightarrow b c-b d x+c^{2} x-c d x^{2}=b c+b d x-c^{2} x-c d x^{2}$

$\Rightarrow 2 c^{2} x=2 b d x$

$\Rightarrow c^{2}=b d$

$\Rightarrow \frac{c}{d}=\frac{d}{c}$       .........$(2)$

From $(1)$ and $(2),$ we obtain

$\frac{b}{a}=\frac{c}{b}=\frac{d}{c}$

Thus, $a, b, c$ and $d$ are in $G.P.$

Similar Questions

સમગુણોત્તર શ્રેણીનાં પ્રથમ ત્રણ પદોનો સરવાળો $\frac{13}{12}$ છે. અને તેમનો ગુણોતર $-1$ છે. તો સામાન્ય ગુણોતર અને  તે પદ શોધો.

સમગુણોત્તર શ્રેણીના પ્રથમ દસ પદોનો સરવાળો $S_1$  છે અને તે પછીના દસ પદોનો ($11$  થી $20$) સરવાળો $S_2$  છે. તો સામાન્ય ગુણોત્તર કેટલો થશે ?

બેંકમાં $Rs.$ $500$, $10 \%$ ના વાર્ષિક ચક્રવૃદ્ધિ વ્યાજે મૂકીએ, તો $10$ વર્ષને અંતે કેટલી રકમ મળે ? 

અનંત સમગુણોત્તર શ્રેણીના $n$ પદોનો સરવાળો $20$ છે. અને તેમના વર્ગનો સરવાળો $10$ છે. તો સમગુણોત્તર શ્રેણીનો સામાન્ય ગુણોત્તર કેટલો થાય ?

$\alpha$ અને $\beta$ એ સમીકરણ $x^{2}-3 x+p=0$ ના બીજો હોય તથા $\gamma$ અને $\delta$ એ સમીકરણ $x^{2}-6 x+q=0$ ના બીજો છે. જો $\alpha$ $\beta, \gamma, \delta$ એ સમગુણોત્તર શ્રેણીમાં હોય તો $(2 q+p):(2 q-p)$ મેળવો 

  • [JEE MAIN 2020]