यदि $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0),$ हो तो दिखाइए कि $a, b, c$ तथा $d$ गुणोत्तर श्रेणी में हैं।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that,

$\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}$

$\Rightarrow(a+b x)(b-c x)=(b+c x)(a-b x)$

$\Rightarrow a b-a c x+b^{2} x-b c x^{2}=a b-b^{2} x+a c x-b c x^{2}$

$\Rightarrow 2 b^{2} x=2 a c x$

$\Rightarrow b^{2}=a c$

$\Rightarrow \frac{b}{a}=\frac{c}{b}$          .........$(1)$

Also, $\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}$

$\Rightarrow(b+c x)(c-d x)=(b-c x)(c+d x)$

$\Rightarrow b c-b d x+c^{2} x-c d x^{2}=b c+b d x-c^{2} x-c d x^{2}$

$\Rightarrow 2 c^{2} x=2 b d x$

$\Rightarrow c^{2}=b d$

$\Rightarrow \frac{c}{d}=\frac{d}{c}$       .........$(2)$

From $(1)$ and $(2),$ we obtain

$\frac{b}{a}=\frac{c}{b}=\frac{d}{c}$

Thus, $a, b, c$ and $d$ are in $G.P.$

Similar Questions

यदि धनात्मक पदों की एक गुणोत्तर श्रेढ़ी के दूसरे, तीसरे तथा चौथे पदों का योगफल $3$ है तथा इसके छठे, सातवें और आठवें पदों का योगफल $243$ है, तो इस गुणोत्तर श्रेढ़ी के प्रथम $50$ पदों का योगफल है

  • [JEE MAIN 2020]

यदि $a, b, c, d$ तथा $p$ विभिन्न वास्तविक संख्याएँ इस प्रकार हैं कि $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$ तो दर्शाइए कि $a, b, c$ तथा $d$ गुणोत्तर श्रेणी में हैं।

$500$ रुपये धनराशि $10 \%$ वार्षिक चक्रवृद्धी ब्याज पर $10$ वर्षों बाद क्या हो जाएगी, ज्ञात कीजिए ?

यदि किसी गुणोत्तर श्रेणी का दसवां पद $9$ तथा चौथा पद $4$ हो, तो  उसका सातवां पद है

यदि किसी गुणोत्तर श्रेणी का प्रथम पद $a$, अन्तिम पद $l$ तथा सार्वअनुपात $r$ हो, तो इस श्रेणी के पदों की संख्या है