For three vectors $\vec{A}=(-x \hat{i}-6 \hat{j}-2 \hat{k})$, $\vec{B}=(-\hat{i}+4 \hat{j}+3 \hat{k})$ and $\vec{C}=(-8 \hat{i}-\hat{j}+3 \hat{k})$, if $\overrightarrow{\mathrm{A}} \cdot(\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{C}})=0$, them value of $\mathrm{x}$ is. . . . . .. 

  • [JEE MAIN 2024]
  • A

    $2$

  • B

    $4$

  • C

    $6$

  • D

    $8$

Similar Questions

What is the product of two vectors if they are parallel or antiparallel ? 

Which of the following is the unit vector perpendicular to $\overrightarrow A $ and $\overrightarrow B $

A vector $\overrightarrow{ A }$ points vertically upward and $\overrightarrow{ B }$ points towards north. The vector product $\overrightarrow{ A } \times \overrightarrow{ B }$ is

The angle between two vectors given by $6\hat i + 6\hat j - 3\hat k$ and $7\hat i + 4\hat j + 4\hat k$ is

If $| A |=2,| B |=5$ and $| A \times B |=8$ Angle between $A$ and $B$ is acute, then $A \cdot B$ is