If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.
Column $-I$ | Column $-II$ |
$(a)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,0$ | $(i)$ $\theta = \,{30^o}$ |
$(b)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,8$ | $(ii)$ $\theta = \,{45^o}$ |
$(c)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4$ | $(iii)$ $\theta = \,{90^o}$ |
$(d)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4\sqrt 2$ | $(iv)$ $\theta = \,{0^o}$ |
Given $|\mathrm{A}|=2$ and $|\mathrm{B}|=4$
$(a)$ $|\vec{A} \times \vec{B}|=A B \sin \theta=0$
$\therefore \sin \theta=0$
$\therefore \theta=0$
$\therefore$ Option $(a)$ matches with option $(iv)$.
$(b)$ $|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=\mathrm{AB} \sin \theta=8$ $\therefore 2 \times 4 \sin \theta=8$ $\therefore \sin \theta=1=\sin 90^{\circ}$ $\therefore \theta=90^{\circ}$ $\therefore$ Option (b) matches with option (iii)
$\therefore$ Option (b) matches with (c) $|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=\mathrm{AB} \sin \theta=4$
$(c)$ $|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=\mathrm{AB}$ $\therefore 2 \times 4 \sin \theta=4$
$\therefore \sin \theta=\frac{1}{2}=\sin 30^{\circ}$
$\therefore \theta=30^{\circ}$
$\therefore$ Option $(c)$ matches with option $(i)$.
$(d)$ $|\vec{A} \times \vec{B}|=A B \sin \theta=4 \sqrt{2}$
$\therefore 2 \times 4 \sin \theta=4 \sqrt{2}$
$\therefore \sin \theta=\frac{1}{\sqrt{2}}=\sin 45^{\circ}$
$\therefore \theta=45^{\circ}$
Option $(d)$ matches with option $(ii)$.
Find the angle between two vectors $\vec A = 2\hat i + \hat j - \hat k$ and $\vec B = \hat i - \hat k$ ....... $^o$
If $\overrightarrow{ A }=(2 \hat{ i }+3 \hat{ j }-\hat{ k }) \;m$ and $\overrightarrow{ B }=(\hat{ i }+2 \hat{ j }+2 \hat{ k })\; m$. The magnitude of component of vector $\overrightarrow{ A }$ along vector $\vec{B}$ will be $......m$.
For three vectors $\vec{A}=(-x \hat{i}-6 \hat{j}-2 \hat{k})$, $\vec{B}=(-\hat{i}+4 \hat{j}+3 \hat{k})$ and $\vec{C}=(-8 \hat{i}-\hat{j}+3 \hat{k})$, if $\overrightarrow{\mathrm{A}} \cdot(\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{C}})=0$, them value of $\mathrm{x}$ is. . . . . ..
$\overrightarrow A = 2\hat i + 4\hat j + 4\hat k$ and $\overrightarrow B = 4\hat i + 2\hat j - 4\hat k$ are two vectors. The angle between them will be ........ $^o$