What is the angle between $(\overrightarrow P + \overrightarrow Q )$ and $(\overrightarrow P \times \overrightarrow Q )$

  • A

    0

  • B

    $\frac{\pi }{2}$

  • C

    $\frac{\pi }{4}$

  • D

    $\pi $

Similar Questions

For what value of $x$, will the two vectors $A =2 \hat{ i }+2 \hat{ j }-x \hat{ k }$ and $B =2 \hat{ i }-\hat{ j }-3 \hat{ k }$ are perpendicular to each other?

Three vectors $\overrightarrow a ,\,\overrightarrow b $and $\overrightarrow c $ satisfy the relation $\overrightarrow a \,.\,\overrightarrow b = 0$ and $\overrightarrow a \,.\,\overrightarrow c = 0.$ The vector $\overrightarrow a $ is parallel to

  • [AIIMS 1996]

The two vectors $\vec A = -2\widehat i + \widehat j + 3\widehat k$ and $\vec B = 7\widehat i + 5\widehat j + 3\widehat k$ are :-

Find the angle between two vectors $\vec A = 2\hat i + \hat j - \hat k$ and $\vec B = \hat i - \hat k$ ....... $^o$

$\vec A$ and $\vec B$ are two vectors and $\theta$ is the angle between them, if $|\vec A \times \vec B|=\sqrt 3(\vec A \cdot \vec B) $ the value of $\theta$ is ......... $^o$

  • [AIPMT 2007]