3 and 4 .Determinants and Matrices
hard

જો $\Delta=\left|\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ 2 x-3 & 3 x-4 & 4 x-5 \\ 3 x-5 & 5 x-8 & 10 x-17\end{array}\right|=$ $Ax ^{3}+ Bx ^{2}+ Cx + D ,$ હોય તો $B + C$ ની કિમત શોધો 

A

$-1$

B

$1$

C

$-3$

D

$9$

(JEE MAIN-2020)

Solution

$\Delta= \left|\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ 2 x-3 & 3 x-4 & 4 x-5 \\ 3 x-5 & 5 x-8 & 10 x-17\end{array}\right|$

$=A x^{3}+B x^{2}+C x+D$

$R_{2} \rightarrow R_{2}-R_{1}$

$R_{3} \rightarrow R_{3}-R_{2}$

$\Delta=\left|\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ x-1 & x-1 & x-1 \\ x-2 & 2(x-2) & 6(x-2)\end{array}\right|$

$=(x-1)(x-2)\left|\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ 1 & 1 & 1 \\ 1 & 2 & 6\end{array}\right|$

$=-3(x-1)^{2}(x-2)=-3 x^{3}+12 x^{2}-15 x+6$

$\therefore \quad B+C=12-15=-3$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.