If $\Delta=\left|\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ 2 x-3 & 3 x-4 & 4 x-5 \\ 3 x-5 & 5 x-8 & 10 x-17\end{array}\right|=$ $Ax ^{3}+ Bx ^{2}+ Cx + D ,$ then $B + C$ is equal to
$-1$
$1$
$-3$
$9$
If the system of linear equation $x + 2ay + az = 0,$ $x + 3by + bz = 0,$ $x + 4cy + cz = 0$ has a non zero solution, then $a,b,c$
The parameter on which the value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\{\cos (p - d)x}&{\cos px}&{\cos (p + d)x}\\{\sin (p - d)x}&{\sin px}&{\sin (p + d)x}\end{array}\,} \right|$ does not depend upon
The value of $\left| {\,\begin{array}{*{20}{c}}1&1&1\\{bc}&{ca}&{ab}\\{b + c}&{c + a}&{a + b}\end{array}\,} \right|$is
If $\omega $ is a complex cube root of unity, then the determinant $\left| {\,\begin{array}{*{20}{c}}2&{2\omega }&{ - {\omega ^2}}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $
By using properties of determinants, show that:
$\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$