$\sum_{\mathrm{k}=0}^{20}\left({ }^{20} \mathrm{C}_{\mathrm{k}}\right)^{2}$ is equal to :
${ }^{40} \mathrm{C}_{21}$
${ }^{40} \mathrm{C}_{19}$
${ }^{40} \mathrm{C}_{20}$
${ }^{41} \mathrm{C}_{20}$
If ${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ...... + {C_{15}}{x^{15}},$ then ${C_2} + 2{C_3} + 3{C_4} + .... + 14{C_{15}} = $
The sum to $(n + 1)$ terms of the following series $\frac{{{C_0}}}{2} - \frac{{{C_1}}}{3} + \frac{{{C_2}}}{4} - \frac{{{C_3}}}{5} + $..... is
If n is a positive integer and ${C_k} = {\,^n}{C_k}$, then the value of ${\sum\limits_{k = 1}^n {{k^3}\left( {\frac{{{C_k}}}{{{C_{k - 1}}}}} \right)} ^2}$ =
If ${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ and ${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $, then $\frac{{{t_n}}}{{{S_n}}}$ is equal to