જો $\sum_{r=1}^{10} r !\left( r ^{3}+6 r ^{2}+2 r +5\right)=\alpha(11 !),$ તો $\alpha$ ની કિમંત મેળવો.
$180$
$148$
$160$
$176$
If $\sum\limits_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum\limits_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$ જ્યાં $\alpha \in R$, હોય, તો $16 \alpha$ નું મૂલ્ય...........છે
જો $^{20}{C_1} + \left( {{2^2}} \right){\,^{20}}{C_3} + \left( {{3^2}} \right){\,^{20}}{C_3} + \left( {{2^2}} \right) + ..... + \left( {{{20}^2}} \right){\,^{20}}{C_{20}} = A\left( {{2^\beta }} \right)$ થાય તો $(A, \beta )$ ની કિમત મેળવો.
જો $\left(x^{n}+\frac{2}{x^{5}}\right)^{7}$ ના દ્વિપદી વિસ્તરણમાં ધન ધાતવાળા તમામ $x$ ના સહગુણકોનો સરવાળો $939$ હોય, તો $n$ ની તમામ શક્ય પૂણાંક કિંમતોનો સરવાળો $\dots\dots\dots$ છે.
ધારો કે $(1+x)^{10}$ ના વિસ્તરણમાં $x^{ r }$ નો દ્વિપદ્દી સહગગણક $C _{ r }$ વડે દર્શાવાય છે. જો $\alpha, \beta \in R$ માટે, $C _{1}+3 \cdot 2 C _{2}+5 \cdot 3 C _{3}+\ldots 10$ પદો સુધી = $\frac{\alpha \times 2^{11}}{2^{\beta}-1}\left(C_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+\ldots 10\right.$ પદો સુધી $)$, તો $\alpha+\beta$ ની કિમત ....... છે.
${(x + y)^n}$ વિસ્તરણમાં સહગુણકોનો સરવાળો $4096$ છે , તો વિસ્તરણમાં મહતમ સહગુણક મેળવો.