The system of linear equation $x + y + z = 2, 2x + 3y + 2z = 5$, $2x + 3y + (a^2 -1)\,z = a + 1$ then

  • [JEE MAIN 2019]
  • A

    is inconsistent when $a = 4$

  • B

    has a unique solution for $\left| a \right| = \sqrt 3 $

  • C

    has infinitely many solutions for $a = 4$

  • D

    inconsistent when $\left| a \right| = \sqrt 3 $

Similar Questions

If the system of equations  $x +y + z = 6$ ; $x + 2y + 3z= 10$ ; $x + 2y + \lambda z = 0$ has a unique solution, then $\lambda $ is not equal to

  • [AIEEE 2012]

The value of $k \in R$, for which the following system of linear equations

$3 x-y+4 z=3$

$x+2 y-3 x=-2$

$6 x+5 y+k z=-3$

has infinitely many solutions, is:

  • [JEE MAIN 2021]

$\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = $

$\left| {\,\begin{array}{*{20}{c}}{{{({a^x} + {a^{ - x}})}^2}}&{{{({a^x} - {a^{ - x}})}^2}}&1\\{{{({b^x} + {b^{ - x}})}^2}}&{{{({b^x} - {b^{ - x}})}^2}}&1\\{{{({c^x} + {c^{ - x}})}^2}}&{{{({c^x} - {c^{ - x}})}^2}}&1\end{array}\,} \right| = $

The number of real values of $\lambda $ for which the system of linear equations $2x + 4y - \lambda  z = 0$ ;$4x + \lambda y + 2z = 0$ ; $\lambda x + 2y+ 2z = 0$ has infinitely many solutions, is

  • [JEE MAIN 2017]