If $\mathrm{n}$ is the number of solutions of the equation
$2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1, x \in[0, \pi]$
and $S$ is the sum of all these solutions, then the ordered pair $(\mathrm{n}, \mathrm{S})$ is :
$(3,13 \pi / 3)$
$(2,2 \pi / 3)$
$(2,8 \pi / 9)$
$(3,5 \pi / 3)$
The equation $3\cos x + 4\sin x = 6$ has
If ${\sin ^2}\theta = \frac{1}{4},$ then the most general value of $\theta $ is
The number of pairs $(x, y)$ satisfying the equations $\sin x + \sin y = \sin (x + y)$ and $|x| + |y| = 1$ is
The number of solutions of $sin \,3x\, = cos\, 2x$ , in the interval $\left( {\frac{\pi }{2},\pi } \right)$ is
The general solution of $\sin x - 3\sin 2x + \sin 3x = $ $\cos x - 3\cos 2x + \cos 3x$ is