If $\mathrm{n}$ is the number of solutions of the equation

$2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1, x \in[0, \pi]$

and $S$ is the sum of all these solutions, then the ordered pair $(\mathrm{n}, \mathrm{S})$ is :

  • [JEE MAIN 2021]
  • A

    $(3,13 \pi / 3)$

  • B

    $(2,2 \pi / 3)$

  • C

    $(2,8 \pi / 9)$

  • D

    $(3,5 \pi / 3)$

Similar Questions

The equation $3\cos x + 4\sin x = 6$ has

If ${\sin ^2}\theta = \frac{1}{4},$ then the most general value of $\theta $ is

The number of pairs $(x, y)$ satisfying the equations $\sin x + \sin y = \sin (x + y)$ and $|x| + |y| = 1$ is

The number of solutions of $sin \,3x\, = cos\, 2x$ , in the interval $\left( {\frac{\pi }{2},\pi } \right)$ is

  • [JEE MAIN 2018]

The general solution of $\sin x - 3\sin 2x + \sin 3x = $ $\cos x - 3\cos 2x + \cos 3x$ is

  • [IIT 1989]