If $Z=\frac{A^{2} B^{3}}{C^{4}}$, then the relative error in $Z$ will be
$\frac{\Delta A }{ A }+\frac{\Delta B }{ B }+\frac{\Delta C }{ C }$
$\frac{2 \Delta A }{ A }+\frac{3 \Delta B }{ B }-\frac{4 \Delta C }{ C }$
$\frac{2 \Delta A }{ A }+\frac{3 \Delta B }{ B }+\frac{4 \Delta C }{ C }$
$\frac{\Delta A }{ A }+\frac{\Delta B }{ B }-\frac{\Delta C }{ C }$
What is error in measurement ? What is mistake in measurement ?
In an experiment of simple pendulum time period measured was $50\,sec$ for $25$ vibrations when the length of the simple pendulum was taken $100\,cm$ . If the least count of stop watch is $0.1\,sec$ . and that of meter scale is $0.1\,cm$ then maximum possible error in value of $g$ is .......... $\%$
Two resistors ${R}_{1}=(4 \pm 0.8) \Omega$ and ${R}_{2}=(4 \pm 0.4)$ $\Omega$ are connected in parallel. The equivalent resistance of their parallel combination will be
Given below are two statements: one is labelled as Assertion $A$ and the other is labelled as Reason $R$
Assertion $A$ : A spherical body of radius $(5 \pm 0.1)$ $mm$ having a particular density is falling through a liquid of constant density. The percentage error in the calculation of its terminal velocity is $4\,\%$.
Reason $R$ : The terminal velocity of the spherical body falling through the liquid is inversely proportional to its radius.
In the light of the above statements, choose the correct answer from the options given below on :
In an experiment to determine the acceleration due to gravity $g$, the formula used for the time period of a periodic motion is $T=2 \pi \sqrt{\frac{7(R-r)}{5 g}}$. The values of $R$ and $r$ are measured to be $(60 \pm 1) \mathrm{mm}$ and $(10 \pm 1) \mathrm{mm}$, respectively. In five successive measurements, the time period is found to be $0.52 \mathrm{~s}, 0.56 \mathrm{~s}, 0.57 \mathrm{~s}, 0.54 \mathrm{~s}$ and $0.59 \mathrm{~s}$. The least count of the watch used for the measurement of time period is $0.01 \mathrm{~s}$. Which of the following statement($s$) is(are) true?
($A$) The error in the measurement of $r$ is $10 \%$
($B$) The error in the measurement of $T$ is $3.57 \%$
($C$) The error in the measurement of $T$ is $2 \%$
($D$) The error in the determined value of $g$ is $11 \%$