8. Sequences and Series
hard

If $\left\{a_{i}\right\}_{i=1}^{n}$ where $n$ is an even integer, is an arithmetic progression with common difference $1$ , and $\sum \limits_{ i =1}^{ n } a _{ i }=192, \sum \limits_{ i =1}^{ n / 2} a _{2 i }=120$, then $n$ is equal to

A

$48$

B

$96$

C

$92$

D

$104$

(JEE MAIN-2022)

Solution

$\sum \limits_{ i =1}^{ n } a _{ i }=\frac{ n }{2}\left\{2 a _{1}+( n +1)\right\}=192$

$\Rightarrow 2 a _{1}+( n -1)=\frac{384}{ n } \ldots-(1)$

$\sum \limits_{ i =1}^{ n / 2} a _{2 i }=\frac{ n }{4}\left[2 a _{1}+2+\left(\frac{ n }{2}-1\right) 2\right]=120$

$2 a _{1}+ n =\frac{480}{ n } \cdots-(2)$

From equation ($2$) and ($1$)

$1=\frac{480}{ n }-\frac{384}{ n }$

$n =480-384=96$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.