यदि $\left\{ a _{ i }\right\}_{ i =1}^{ n }$ (जहाँ $n$ सम पूर्णांक है) समान्तर श्रेढ़ी है जिसका सार्वअन्तर $1$ तथा $\sum \limits_{ i =1}^{ n } a _{ i }=192$, $\sum \limits_{ i =1}^{ n / 2} a _{2 i }=120$ है, तो $n$ बराबर है:
$48$
$96$
$92$
$104$
माना $a_{1}, a_{2}, a_{3}, \ldots$ एक $A.P.$ है। यदि $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$ है, तो $\frac{a_{11}}{a_{10}}$ बराबर है
तीन समांतर श्रेणियों
$3,7,11,15, \ldots \ldots . . . ., 399$,
$2,5,8,11, \ldots \ldots \ldots \ldots . ., 359$ तथा
$2,7,12,17, \ldots \ldots . ., 197$,
के उभ्यनिष्ठ पदों का योग है ____________I
दी गई परिभाषाओं के आधार पर निम्नलिखित प्रत्येक अनुक्रम के प्रथम तीन पद बताइए
$a_{n}=\frac{n-3}{4}$
निम्न में से कौन सी श्रेणी समान्तर श्रेणी है
यदि ${S_k}$ किसी समान्तर श्रेणी के $k$ पदों का योगफल है जिसके प्रथम पद एवं सार्वअन्तर क्रमश: $‘a’$ व $‘d’$ हैं, तो $\frac{{{S_{kn}}}}{{{S_n}}}$,$n$ से स्वतंत्र होगा यदि