If ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ and $a,\;b,\;c$ are in $G.P.$, then $x,\;y,\;z$ will be in
$A.P.$
$G.P.$
$H.P.$
None of these
The sum of the common terms of the following three arithmetic progressions.
$3,7,11,15,...................,399$
$2,5,8,11,............,359$ and
$2,7,12,17,...........,197$, is equal to $................$.
If three distinct number $a, b, c$ are in $G.P.$ and the equations $ax^2 + 2bc + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root, then which one of the following statements is correct?
Let $S_{n}$ denote the sum of first $n$-terms of an arithmetic progression. If $S_{10}=530, S_{5}=140$, then $\mathrm{S}_{20}-\mathrm{S}_{6}$ is equal to :
If the roots of the equation ${x^3} - 12{x^2} + 39x - 28 = 0$ are in $A.P.$, then their common difference will be
Find the sum of all two digit numbers which when divided by $4,$ yields $1$ as remainder.