If ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ and $a,\;b,\;c$ are in $G.P.$, then $x,\;y,\;z$ will be in
$A.P.$
$G.P.$
$H.P.$
None of these
If the sum of two extreme numbers of an $A.P.$ with four terms is $8$ and product of remaining two middle term is $15$, then greatest number of the series will be
For $p, q \in R$, consider the real valued function $f ( x )=( x - p )^{2}- q , x \in R$ and $q >0$. Let $a _{1}, a _{2}, a _{3}$ and $a _{4}$ be in an arithmetic progression with mean $P$ and positive common difference. If $\left| f \left( a _{ i }\right)\right|=500$ for all $i=1,2,3,4$, then the absolute difference between the roots of $f ( x )=0$ is.
How many terms of the $A.P.$ $-6,-\frac{11}{2},-5, \ldots \ldots$ are needed to give the sum $-25 ?$
If the ${p^{th}}$ term of an $A.P.$ be $\frac{1}{q}$ and ${q^{th}}$ term be $\frac{1}{p}$, then the sum of its $p{q^{th}}$ terms will be
Find the $9^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=(-1)^{n-1} n^{3}$