4-1.Complex numbers
hard

यदि सम्मिश्र संख्या $z \neq 0$ के लिए $\left|z-\frac{1}{z}\right|=2$ है, तो $| z |$ का अधिकतम मान है-

A

$\sqrt{2}$

B

$1$

C

$\sqrt{2}-1$

D

$\sqrt{2}+1$

(JEE MAIN-2022)

Solution

$| z -1 / z |=2$

|| $z \left|-\frac{1}{| z |}\right| \leq\left| z -\frac{1}{ z }\right| \leq| z |+\frac{1}{| z |}$

$\left| r -\frac{1}{ r }\right| \leq 2 \leq r +\frac{1}{ r }$

$\left| r -\frac{1}{ r }\right| \leq 2 \& r +\frac{1}{ r } \geq 2$ always true

$r -\frac{1}{ r } \geq-2 \& r -\frac{1}{ r } \leq 2$

$r ^{2}-1 \leq 2 r$

$r ^{2}-2 r \leq 1$

$( r -1)^{2} \leq 2$

$r -1 \leq \sqrt{2}$

$\left.\therefore z \right|_{\max }=1+\sqrt{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.