- Home
- Standard 11
- Mathematics
4-1.Complex numbers
hard
यदि सम्मिश्र संख्या $z \neq 0$ के लिए $\left|z-\frac{1}{z}\right|=2$ है, तो $| z |$ का अधिकतम मान है-
A
$\sqrt{2}$
B
$1$
C
$\sqrt{2}-1$
D
$\sqrt{2}+1$
(JEE MAIN-2022)
Solution
$| z -1 / z |=2$
|| $z \left|-\frac{1}{| z |}\right| \leq\left| z -\frac{1}{ z }\right| \leq| z |+\frac{1}{| z |}$
$\left| r -\frac{1}{ r }\right| \leq 2 \leq r +\frac{1}{ r }$
$\left| r -\frac{1}{ r }\right| \leq 2 \& r +\frac{1}{ r } \geq 2$ always true
$r -\frac{1}{ r } \geq-2 \& r -\frac{1}{ r } \leq 2$
$r ^{2}-1 \leq 2 r$
$r ^{2}-2 r \leq 1$
$( r -1)^{2} \leq 2$
$r -1 \leq \sqrt{2}$
$\left.\therefore z \right|_{\max }=1+\sqrt{2}$
Standard 11
Mathematics