If $\operatorname{cosec}^2(\alpha+\beta)-\sin ^2(\beta-\alpha)+\sin ^2(2 \alpha-\beta)=\cos ^2(\alpha-\beta)$ where $\alpha, \beta \in\left(0, \frac{\pi}{2}\right)$, then $\sin (\alpha-\beta)$ is equal to

  • [KVPY 2009]
  • A

    $-\frac{1}{2}$

  • B

    $\frac{1}{2}$

  • C

    $\frac{-\sqrt{3}}{2}$

  • D

    $\frac{\sqrt{3}}{2}$

Similar Questions

The number of solutions $x$ of the equation $\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$ in the interval $[2,3]$ is

  • [KVPY 2018]

The number of solutions of the pair of equations $ 2 \sin ^2 \theta-\cos 2 \theta=0 $, $ 2 \cos ^2 \theta-3 \sin \theta=0$ in the interval $[0,2 \pi]$ is

  • [IIT 2007]

The general solution of $\sin x - \cos x = \sqrt 2 $, for any integer $n$ is

The number of roots of the equation $\cos ^7 \theta-\sin ^4 \theta=1$ that lie in the interval $[0,2 \pi]$ is

  • [KVPY 2010]

The number of real numbers $\lambda$ for which the equality $\frac{\sin (\lambda \alpha) \quad \cos (\lambda \alpha)}{\sin \alpha}=\lambda-1$,holds for all real $\alpha$ which are not integral multiples of $\pi / 2$ is

  • [KVPY 2015]