- Home
- Standard 11
- Mathematics
If $\operatorname{cosec}^2(\alpha+\beta)-\sin ^2(\beta-\alpha)+\sin ^2(2 \alpha-\beta)=\cos ^2(\alpha-\beta)$ where $\alpha, \beta \in\left(0, \frac{\pi}{2}\right)$, then $\sin (\alpha-\beta)$ is equal to
$-\frac{1}{2}$
$\frac{1}{2}$
$\frac{-\sqrt{3}}{2}$
$\frac{\sqrt{3}}{2}$
Solution
(a)
$\operatorname{cosec}^2(\alpha+\beta)-\sin ^2(\beta-\alpha)$
$+\sin ^2(2 \alpha-\beta)=\cos ^2(\alpha-\beta)$
$\Rightarrow \operatorname{cosec}^2(\alpha+\beta)+\sin ^2(2 \alpha-\beta)$
$=\cos ^2(\alpha-\beta)+\sin ^2(\alpha-\beta)$
$\Rightarrow \operatorname{cosec}^2(\alpha+\beta)+\sin ^2(2 \alpha-\beta)=1$
lt is possible only $\operatorname{cosec}^2(\alpha+\beta)=1$ and $\sin ^2(2 \alpha-\beta)=0$
$\therefore \quad \alpha+\beta=\frac{\pi}{2}$ and $2 \alpha-\beta=0$
On solving these equations, we get
$\alpha=\frac{\pi}{6} \text { and } \beta=\frac{\pi}{3}$
$\therefore \sin (\alpha-\beta)=\sin \left(\frac{\pi}{6}-\frac{\pi}{3}\right)=\sin \left(-\frac{\pi}{6}\right)=-\frac{1}{2}$