The variable $x$ satisfying the equation $\left| {\sin \,x\,\cos \,x} \right| + \sqrt {2 + {{\tan }^2}\,x + {{\cot }^2}\,x} = \sqrt 3$ belongs to the interval
$\left[ {0,\frac{\pi }{3}} \right]$
$\left( {\frac{\pi }{3},\frac{\pi }{2}} \right)$
$\left[ {\frac{{3\pi }}{4},\pi } \right)$
non-existent
If both roots of quadratic equation ${x^2} + \left( {\sin \,\theta + \cos \,\theta } \right)x + \frac{3}{8} = 0$ are positive and distinct then complete set of values of $\theta $ in $\left[ {0,2\pi } \right]$ is
$\cot \theta = \sin 2\theta (\theta \ne n\pi $, $n$ is integer), if $\theta = $
The expression $(1 + \tan x + {\tan ^2}x)$ $(1 - \cot x + {\cot ^2}x)$ has the positive values for $x$, given by
The solution of the equation $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ is
The number of solutions of the equation $sin\, 2x - 2\,cos\,x+ 4\,sin\, x\, = 4$ in the interval $[0, 5\pi ]$ is