“Explain Triangle method (head to tail method) of vector addition.”
Let us consider two vectors $\vec{A}$ and $\vec{B}$ that lie in a plane as shown in figure $(a)$.
The lengths of the line segments representing these vectors are proportional to the magnitude of the vectors.
To find the sum $\vec{A}+\vec{B}$, we place vector $\vec{B}$ so that its tail is at the head of the vector $\vec{A}$, as in figure (b).
Then we join the tail of $\overrightarrow{\mathrm{A}}$ to the head of $\overrightarrow{\mathrm{B}}$.
This line $\overrightarrow{O Q}$ represent a vector $\vec{R}$, that is the sum of the vectors $\vec{A}$ and $\vec{B}$.
Since, in this procedure of vector addition, vectors are arranged head to tail, this graphical method is called the head-to-tail method.
The two vectors and their resultant form three sides of a triangle, so this method is also known as triangle method of vector addition.
A particle has displacement of $12 \,m$ towards east and $5 \,m$ towards north then $6 \,m $ vertically upward. The sum of these displacements is........$m$
A hall has the dimensions $10\,m \times 12\,m \times 14\,m.$A fly starting at one corner ends up at a diametrically opposite corner. What is the magnitude of its displacement...........$m$
Let $\overrightarrow C = \overrightarrow A + \overrightarrow B$
$(A)$ It is possible to have $| \overrightarrow C | < | \overrightarrow A |$ and $ | \overrightarrow C | < | \overrightarrow B|$
$(B)$ $|\overrightarrow C |$ is always greater than $|\overrightarrow A |$
$(C)$ $|\overrightarrow C |$ may be equal to $|\overrightarrow A | + |\overrightarrow B|$
$(D)$ $|\overrightarrow C |$ is never equal to $|\overrightarrow A | + |\overrightarrow B|$
Which of the above is correct
The sum of two forces acting at a point is $16\, N.$ If the resultant force is $8\, N$ and its direction is perpendicular to minimum force then the forces are