“Explain Triangle method (head to tail method) of vector addition.”
Let us consider two vectors $\vec{A}$ and $\vec{B}$ that lie in a plane as shown in figure $(a)$.
The lengths of the line segments representing these vectors are proportional to the magnitude of the vectors.
To find the sum $\vec{A}+\vec{B}$, we place vector $\vec{B}$ so that its tail is at the head of the vector $\vec{A}$, as in figure (b).
Then we join the tail of $\overrightarrow{\mathrm{A}}$ to the head of $\overrightarrow{\mathrm{B}}$.
This line $\overrightarrow{O Q}$ represent a vector $\vec{R}$, that is the sum of the vectors $\vec{A}$ and $\vec{B}$.
Since, in this procedure of vector addition, vectors are arranged head to tail, this graphical method is called the head-to-tail method.
The two vectors and their resultant form three sides of a triangle, so this method is also known as triangle method of vector addition.
$ABC$ is an equilateral triangle. Length of each side is $a$ and centroid is point $O$. Find $\overrightarrow{A B}+\overrightarrow{A C}=n \overrightarrow{A O}$ then $n = ........ $
Two vectors $\vec A$ and $\vec B$ have equal magnitudes. The magnitude of $(\vec A + \vec B)$ is $‘n’$ times the magnitude of $(\vec A - \vec B)$. The angle between $ \vec A$ and $\vec B$ is
Following sets of three forces act on a body. Whose resultant cannot be zero
If $\overrightarrow R$ is the resultant vector of two vectors $\overrightarrow A $ and $\overrightarrow B $, then $\overrightarrow {\left| R \right|} \,...\,\overrightarrow {\left| A \right|} \, + \,\overrightarrow {\left| B \right|} $.