“Explain Triangle method (head to tail method) of vector addition.”
Let us consider two vectors $\vec{A}$ and $\vec{B}$ that lie in a plane as shown in figure $(a)$.
The lengths of the line segments representing these vectors are proportional to the magnitude of the vectors.
To find the sum $\vec{A}+\vec{B}$, we place vector $\vec{B}$ so that its tail is at the head of the vector $\vec{A}$, as in figure (b).
Then we join the tail of $\overrightarrow{\mathrm{A}}$ to the head of $\overrightarrow{\mathrm{B}}$.
This line $\overrightarrow{O Q}$ represent a vector $\vec{R}$, that is the sum of the vectors $\vec{A}$ and $\vec{B}$.
Since, in this procedure of vector addition, vectors are arranged head to tail, this graphical method is called the head-to-tail method.
The two vectors and their resultant form three sides of a triangle, so this method is also known as triangle method of vector addition.
The position vector of a particle is determined by the expression $\vec r = 3{t^2}\hat i + 4{t^2}\hat j + 7\hat k$ The distance traversed in first $10 \,sec$ is........ $m$
The maximum and minimum magnitude of the resultant of two given vectors are $17 $ units and $7$ unit respectively. If these two vectors are at right angles to each other, the magnitude of their resultant is
Prove the associative law of vector addition.
Three girls skating on a circular ice ground of radius $200 \;m$ start from a point $P$ on the edge of the ground and reach a point $Q$ diametrically opposite to $P$ following different paths as shown in Figure. What is the magnitude of the displacement vector for each ? For which girl is this equal to the actual length of path skate ?
Let $\overrightarrow C = \overrightarrow A + \overrightarrow B$
$(A)$ It is possible to have $| \overrightarrow C | < | \overrightarrow A |$ and $ | \overrightarrow C | < | \overrightarrow B|$
$(B)$ $|\overrightarrow C |$ is always greater than $|\overrightarrow A |$
$(C)$ $|\overrightarrow C |$ may be equal to $|\overrightarrow A | + |\overrightarrow B|$
$(D)$ $|\overrightarrow C |$ is never equal to $|\overrightarrow A | + |\overrightarrow B|$
Which of the above is correct