Two forces $P$ and $Q$, of magnitude $2F$ and $3F$, respectively, are at an angle $\theta $ with each other. If the force $Q$ is doubled, then their resultant also gets doubled. Then, the angle $\theta $ is ....... $^o$
$120$
$60$
$90$
$30$
How many minimum number of coplanar vectors having different magnitudes can be added to give zero resultant
Five equal forces of $10 \,N$ each are applied at one point and all are lying in one plane. If the angles between them are equal, the resultant force will be ........... $\mathrm{N}$
The resultant of two vectors $\overrightarrow P $ and $\overrightarrow Q $ is $\overrightarrow R .$ If $Q$ is doubled, the new resultant is perpendicular to $P$. Then $R $ equals
A vector $\vec A $ is rotated by a small angle $\Delta \theta$ radian $( \Delta \theta << 1)$ to get a new vector $\vec B$ In that case $\left| {\vec B - \vec A} \right|$ is
Given that; $A = B = C$. If $\vec A + \vec B = \vec C,$ then the angle between $\vec A$ and $\vec C$ is $\theta _1$. If $\vec A + \vec B+ \vec C = 0,$ then the angle between $\vec A$ and $\vec C$ is $\theta _2$. What is the relation between $\theta _1$ and $\theta _2$ ?