The range of the function $f(x) = \frac{{x + 2}}{{|x + 2|}}$ is
$\{0, 1\}$
$\{-1, 1\}$
$R$
$R - \{ - 2\} $
Product of all the solution of the equation ${x^{1 + {{\log }_{10}}x}} = 100000x$ is
If $f(x)$ be a polynomial function satisfying $f(x).f (\frac{1}{x}) = f(x) + f (\frac{1}{x})$ and $f(4) = 65$ then value of $f(6)$ is
Given the function $f(x) = \frac{{{a^x} + {a^{ - x}}}}{2},\;(a > 2)$. Then $f(x + y) + f(x - y) = $
Let $R$ be the set of all real numbers and $f(x)=\sin ^{10} x\left(\cos ^8 x+\cos ^4 x+\cos ^2 x+1\right)$ $x \in R$. Let $S=\{\lambda \in R$ there exists a point $c \in(0,2 \pi)$ with $\left.f^{\prime}(c)=\lambda f(c)\right\}$ Then,
Domain of the function $f(x) = \sqrt {2 - {{\sec }^{ - 1}}x} $ is