જો $aN = \{ ax:x \in N\} ,$ તો ગણ $3N \cap 7N$ મેળવો.....$N$
$21$
$10$
$4$
એકપણ નહી.
છેદગણ શોધો : $A = \{ x:x$ એ $3$ ની ગુણિત પ્રાકૃતિક સંખ્યા છે. $\} ,$ $B = \{ x:x$ એ $6$ થી નાની પ્રાકૃતિક સંખ્યા છે. $\} $
એક સ્કૂલમાં ત્રણ રમત રમાડવામાં આવે છે . કેટલાક વિધાર્થી બે પ્રકારની રમત રમે છે પરંતુ ત્રણેય રમત રમતા નથી . આપેલ પૈકી કઈ વેન આકૃતિઓ ઉપરોક્ત વિધાનને સમર્થન કરે છે .
જો $A = \{ x:x$ એ પ્રાકૃતિક સંખ્યા છે $\} ,B = \{ x:x$ એ યુગ્મ પ્રાકૃતિક સંખ્યા છે $\} $ $C = \{ x:x$ એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે $\} $ અને $D = \{ x:x$ એ અવિભાજ્ય સંખ્યા છે, $\} $ તો મેળવો : $B \cap C$
$A =$ [$x:x$ એ $3$ નો ગુણિત છે ] અને $B =$ [$x:x$ એ $5$ નો ગુણિત છે ], તો $A -B$ એ . . . ($\bar A$ એ ગણ $A$ નો પૂરક ગણ દર્શાવે છે )
છેદગણ શોધો : $A=\{1,2,3\}, B=\varnothing$