જો $R$ એ ગણ $\{1,2,3,4\}$ પરનો નાનામાં નાનો એવો સામ્ય સંબંધ હોય કે જેથી $\{(1,2),(1,3)\} \subset R$, તો $R$ ના ધટકોની સંખ્યા_____________ છે.
$10$
$12$
$8$
$15$
જો સંબંધ $R$ એ ગણ $N$ પર “$nRm \Leftrightarrow n$ એ $m$ નો અવયવ છે.(i.e., $n|m$)” દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . . .
પ્રાકૃતિક સંખ્યા પર સંબંધ $“ < ”$ એ . . .
જો $R$ એ $n$ સભ્ય ધરાવતા ગણ $A$ પરનો સામ્ય સંબંધ હોય તો $R$ માં રહેલી કુલ ક્રમયુકત જોડની સંખ્યા . .. . . થાય.
ધારો કે $X =\{1,2,3,4,5,6,7,8,9\} .$ $R _{1}$ એ $X$ પરનો સંબંધ છે અને તે
$R _{1}=\{(x, y): x-y$ કે એ $3$ વડે વિભાજ્ય છે. $\}$ દ્વારા વ્યાખ્યાયિત છે અને $X$ પર બીજો એક સંબંધ $R _{2}$ એ ${R_2} = \{ (x,y):\{ x,y\} \subset \{ 1,4,7\} \} $ અથવા $\{x, y\} \subset\{2,5,8\} $ અથવા $\{x, y\} \subset\{3,6,9\}\}$ દ્વારા વ્યાખ્યાયિત છે. સાબિત કરી કે $R _{1}= R _{2}$.
જો $H$ એ એક ગામમા આવેલા ઘરોનો ગણ છે જેના ઘરોનો દરવાજો ચાર દિશાઓ માંથી એક દિશા મા આવેલ છે.$R = \{ (x,y)|(x,y) \in H \times H$ અને $x, y$ સરખિ દિશામા આવેલ છે.$\}$.હોય તો સંબંધ $' R '$ એ .........