1.Relation and Function
easy

જો $\mathrm{T}$ એ સમતલમાં આવેલા બધા જ ત્રિકોણનો ગણ હોય અને $\mathrm{R}$ એ $\mathrm{T}$ પરનો સંબંધ $\mathrm{R} =\left\{\left( \mathrm{T} _{1}, \mathrm{T} _{2}\right): \mathrm{T} _{1}\right.$ એ ${{T_2}}$ ને એકરૂપ છે $\}$ દ્વારા વ્યાખ્યાયિત હોય, તો સાબિત કરો કે $\mathrm{R}$ એ સામ્ય સંબંધ છે. 

Option A
Option B
Option C
Option D

Solution

$\mathrm{R}$ is reflexive, since every triangle is congruent to it self.

Further, $\left( \mathrm{T} _{1}, \,\mathrm{T}_{2}\right) \in \mathrm{R} \Rightarrow \mathrm{T} _{1}$ is congruent to $\mathrm{T} _{2} \Rightarrow \mathrm{T} _{2}$ is congruent to $\mathrm{T} _{1} \Rightarrow\left( \mathrm{T} _{2}, \mathrm{T} _{1}\right) \in \mathrm{R} .$

Hence, $\mathrm{R}$ is symmetric.

Moreover, $\left( \mathrm{T} _{1},\, \mathrm{T} _{2}\right),\left( \mathrm{T} _{2}, \,\mathrm{T} _{3}\right) \in \mathrm{R} \Rightarrow \mathrm{T} _{1}$ is congruent to $\mathrm{T} _{2}$ and $\mathrm{T} _{2}$ is congruent to $\mathrm{T} _{3} \Rightarrow \mathrm{T} _{1}$ is congruent to $\mathrm{T} _{3} \Rightarrow\left( \mathrm{T} _{1}, \,\mathrm{T} _{3}\right) \in \mathrm{R}$.

Therefore, $\mathrm{R}$ is an equivalence relation.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.