જો $A = \{1, 2, 3, 4\}$ અને $R$ એ $A$ પરનો સંબંધ છે કે જેથી $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 3)\}$.તો $R$ એ . . .
સ્વવાચક
પરંપરિત
સામ્ય સંબંધ
એકપણ નહીં.
જો $R = \{(1, 3), (2, 2), (3, 2)\}$ અને $S = \{(2, 1), (3, 2), (2, 3)\}$ એ ગણ $A = \{1, 2, 3\} $પરના સંબંધ હોય તો $RoS =$
સાબિત કરો કે પૂર્ણાકોના ગણ $\mathrm{Z}$ પર વ્યાખ્યાયિત સંબંધ $\mathrm{R} =\{(\mathrm{a}, \mathrm{b}): 2$ એ $\left( {{\rm{a}} - {\rm{b}}} \right)$ નો અવયવ છે $\} $ એ સામ્ય સંબંધ છે.
સાબિત કરો કે $R$ પર વ્યાખ્યાયિત સંબંધ $R =\{(a, b): a \leq b\},$ એ સ્વવાચક અને પરંપરિત છે, પરંતુ સંમિત સંબંધ નથી.
જો $R$ એ $n$ ઘટક ધરાવતા શાન્ત ગણ $A$ પરનો સ્વવાચક સંબંધ છે અને $R$ માં $m$ કષ્મયુકત જોડ હોય તો . . .
ધારોકે $A =\{1,3,4,6,9\}$ અને $B =\{2,4,5,8,10\}$.ધારોકે $R$ એ $A \times B$ પરનો એવો વ્યાખ્યાયિત સંબંધ છે કે જેથી $R =\left\{\left(\left(a_1, b _1\right),\left( a _2, b _2\right)\right): a _1 \leq b _2\right.$ અને $\left.b _1 \leq a _2\right\}$.તો ગુણ $R$ ના ધટકો ની સંખ્યા $.......$ છે.