Basic of Logarithms
hard

If ${\log _{1/\sqrt 2 }}\sin x > 0,x \in [0,\,\,4\pi ],$ then the number of values of $x$ which are integral multiples of ${\pi \over 4},$ is

A

$4$

B

$12$

C

$3$

D

None of these

Solution

(a) $0 < {1 \over {\sqrt 2 }} < 1$

${\log _{1/\sqrt 2 }}\sin x > 0$, $x \in [0,\,4\pi ]$$ \Rightarrow $ $0 < \sin x < 1$

$\therefore$ Integral multiple of ${\pi \over 4}$ will be ${\pi \over 4},\,{{3\pi } \over 4},\,{{9\pi } \over 4},{{11\pi } \over 4}$

Number of required values $= 4.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.