If ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}},$ then which of the following is true

  • A

    $xyz = 1$

  • B

    ${x^a}{y^b}{z^c} = 1$

  • C

    ${x^{b + c}}{y^{c + a}}{z^{a + b}} = 1$

  • D

    All of These

Similar Questions

Let $\left(x_0, y_0\right)$ be the solution of the following equations $(2 x)^{\ln 2} =(3 y)^{\ln 3}$ $3^{\ln x} =2^{\ln y}$ . Then $x_0$ is

  • [IIT 2011]

If $a, b, c$ are distinct positive numbers, each different from $1$, such that $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$ $ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ then $abc =$

The sum of all the natural numbers for which $log_{(4-x)}(x^2 -14x + 45)$ is defined is -

If ${a^2} + 4{b^2} = 12ab,$ then $\log (a + 2b)$ is

If $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ which one of the following is correct