$\sqrt {(3 + \sqrt 5 )} $ is equal to

  • A

    $\sqrt 5 + 1$

  • B

    $\sqrt 3 + \sqrt 2 $

  • C

    $(\sqrt 5 + 1)/\sqrt 2 $

  • D

    ${1 \over 2}(\sqrt 5 + 1)$

Similar Questions

If ${a^{x - 1}} = bc,{b^{y - 1}} = ca,{c^{z - 1}} = ab,$then $\sum {(1/x) = } $

${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $

${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $

$\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $

The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is