$\sqrt {(3 + \sqrt 5 )} $ is equal to
$\sqrt 5 + 1$
$\sqrt 3 + \sqrt 2 $
$(\sqrt 5 + 1)/\sqrt 2 $
${1 \over 2}(\sqrt 5 + 1)$
If $x = 3 - \sqrt {5,} $ then ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are
The number of integers $q , 1 \leq q \leq 2021$, such that $\sqrt{ q }$ is rational, and $\frac{1}{ q }$ has a terminating decimal expansion, is
${{{{[4 + \sqrt {(15)} ]}^{3/2}} + {{[4 - \sqrt {(15)} ]}^{3/2}}} \over {{{[6 + \sqrt {(35)} ]}^{3/2}} - {{[6 - \sqrt {(35)} ]}^{3/2}}}} = $
Number of Solution of the equation ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ are