$\sqrt {(3 + \sqrt 5 )} $ is equal to
$\sqrt 5 + 1$
$\sqrt 3 + \sqrt 2 $
$(\sqrt 5 + 1)/\sqrt 2 $
${1 \over 2}(\sqrt 5 + 1)$
If ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ and ${b^2} = ac$ then $x + z = $
The square root of $\sqrt {(50)} + \sqrt {(48)} $ is
${{\sqrt 2 } \over {\sqrt {(2 + \sqrt 3 )} - \sqrt {(2 - \sqrt 3 } )}} = $
Number of Solution of the equation ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ are
The greatest number among $\root 3 \of 9 ,\root 4 \of {11} ,\root 6 \of {17} $ is