Basic of Logarithms
hard

જો $a = \sqrt {(21)} - \sqrt {(20)} $ અને $b = \sqrt {(18)} - \sqrt {(17),} $ તો

A

$a = b$

B

$a + b = 0$

C

$a > b$

D

$a < b$

Solution

(d) $a – b = \sqrt {21} – \sqrt {20} – \sqrt {18} + \sqrt {17} $

= $(\sqrt {21} – \sqrt {18} ) – (\sqrt {20} – \sqrt {17} )$

= ${{(\sqrt {21} – \sqrt {18} )(\sqrt {21} + \sqrt {18} )} \over {\sqrt {21} + \sqrt {18} }} – {{20 – 17} \over {\sqrt {20} + \sqrt {17} }}$

= $3\,\left[ {{1 \over {\sqrt {21} + \sqrt {18} }} – {1 \over {\sqrt {20} + \sqrt {17} }}} \right]$

= ${{3\,[\sqrt {20} + \sqrt {17} – \sqrt {21} – \sqrt {18} ]} \over {(\sqrt {21} + \sqrt {18} )\,(\sqrt {20} + \sqrt {17} )}}$

= ${{3\,[(\sqrt {20} – \sqrt {21} ) + (\sqrt {17} – \sqrt {18)} ]} \over {(\sqrt {21} + \sqrt {18} )\,(\sqrt {20} + \sqrt {17} )}}$

= ${{ – 3\,[(\sqrt {21} – \sqrt {20} ) + (\sqrt {18} – \sqrt {17} )} \over {(\sqrt {21} + \sqrt {18} )\,(\sqrt {20} + \sqrt {17} )}} < 0$,

$\therefore a < b$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.