If $a = \sqrt {(21)} - \sqrt {(20)} $ and $b = \sqrt {(18)} - \sqrt {(17),}  $ then

  • A

    $a = b$

  • B

    $a + b = 0$

  • C

    $a > b$

  • D

    $a < b$

Similar Questions

The square root of $\frac{(0.75)^3}{1-(0.75)}+\left[0.75+(0.75)^2+1\right]$ is

  • [KVPY 2012]

The value of $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ is

${a^{m{{\log }_a}n}} = $

${({x^5})^{1/3}}{(16{x^3})^{2/3}}$${\left( {{1 \over 4}{x^{4/9}}} \right)^{ - 3/2}} = $

$\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $