4-1.Complex numbers
medium

यदि $z = x + iy,\,{z^{1/3}} = a - ib$ तथा $\frac{x}{a} - \frac{y}{b} = k\,({a^2} - {b^2})$, तब $k$ का मान है

A

$2$

B

$4$

C

$6$

D

$1$

Solution

(b) ${(x + iy)^{1/3}} = a – ib$

 $x + iy = {(a – ib)^3} = ({a^3} – 3a{b^2}) + i({b^3} – 3{a^2}b)$

$⇒$  $x = {a^3} – 3a{b^2},\,y = {b^3} – 3{a^2}b$

$⇒$    $\frac{x}{a} = {a^2} – 3{b^2},\,\frac{y}{b} = {b^2} – 3{a^2}$

$\therefore $  $\frac{x}{a} – \frac{y}{b} = {a^2} – 3{b^2} – {b^2} + 3{a^2}$

$\frac{x}{a} – \frac{y}{b} = 4({a^2} – {b^2}) = k({a^2} – {b^2})$

$\therefore $  $k = 4$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.