If $z$ is a complex number such that  $\left| z \right| \ge 2$ , then the minimum value of $\left| {z + \frac{1}{2}} \right|$: 

  • [JEE MAIN 2014]
  • A

    is strictly greater than $\frac{5}{2}$ 

  • B

    is strictly greater than $\;\frac{3}{2}$ but less than $\frac{5}{2}$ 

  • C

    is equal to  $\frac{5}{2}$

  • D

    lie in the interval $(1,2)$ 

Similar Questions

If $\frac{{z - i}}{{z + i}}(z \ne - i)$ is a purely imaginary number, then $z.\bar z$ is equal to

If ${z_1},{z_2} \in C$, then $amp\,\left( {\frac{{{{\rm{z}}_{\rm{1}}}}}{{{{{\rm{\bar z}}}_{\rm{2}}}}}} \right) = $

If complex numbers $z_1$ and $z_2$ both satisfy $z + \overline z  = 2 | z -1 |$ and $arg(z_1 -z_2) = \frac{\pi}{3} ,$ then value of $Im (z_1 + z_2)$ is, where $Im (z)$ denotes imaginary part of $z$ -

Modulus of $\left( {\frac{{3 + 2i}}{{3 - 2i}}} \right)$ is

If $z$ is a complex number such that $| z | = 4$ and $arg \,(z) = \frac {5\pi }{6}$ , then $z$ is equal to