- Home
- Standard 11
- Mathematics
If $z$ is a complex number such that $\left| z \right| \ge 2$ , then the minimum value of $\left| {z + \frac{1}{2}} \right|$:
is strictly greater than $\frac{5}{2}$
is strictly greater than $\;\frac{3}{2}$ but less than $\frac{5}{2}$
is equal to $\frac{5}{2}$
lie in the interval $(1,2)$
Solution
$|z| \geq 2$ is the region on or outside circle whose centre is $(0,0)$ and the radius is $2$ .
Minimum $\left|z+\frac{1}{2}\right|$ is distance of $z$, which lies on circle $|z|=2$ from $\left(-\frac{1}{2}, 0\right)$ therefore, minimum $\left|z+\frac{1}{2}\right|=$ Distance of $\left(-\frac{1}{2}, 0\right)$ from $(-2,0)$
$=\sqrt{\left(-2+\frac{1}{2}\right)^{2}+0}=\frac{3}{2}=\sqrt{\left(\frac{-1}{2}+2\right)^{2}+0}=\frac{3}{2}$
Hence, minimum value of $\left|z+\frac{1}{2}\right|$ lies in the interval $(1,2)$