- Home
- Standard 11
- Mathematics
4-1.Complex numbers
normal
The real value of $\theta$ for which the expression $\frac{{1 + i\,\cos \theta }}{{1 - 2i\cos \theta }}$ is a real number is $\left( {n \in I} \right)$
A
$\left( {2n + 1} \right)\pi $
B
$\left( {2n + 1} \right)\pi /2$
C
$2n\,\,\pi $
D
None of these
Solution
$\frac{1+i \cos \theta}{1-2 i \cos \theta}=\frac{(1+i \cos \theta)(1+2 i \cos \theta)}{(1-2 i \cos \theta)(1+2 i \cos \theta)}$
$=\frac{1-2 \cos ^{2} \theta+3 i \cos \theta}{1+4 \cos ^{2} \theta}$
is a real number only if $\frac{3 \cos \theta}{1+4 \cos ^{2} \theta}=0$
i.e. if $\cos \theta=0$
i.e. if $\theta=(2 n+1) \pi / 2, n \in I$
So $(b)$ is correct alternative.
Standard 11
Mathematics