જો $z = 3 + 5i,\,\,$ તો $\,{z^3} + \bar z + 198 = $  

  • A

    $ - 3 - 5i$

  • B

    $ - 3 + 5i$

  • C

    $3 + 5i$

  • D

    $3 - 5i$

Similar Questions

જો $z = x + iy\, (x, y \in R,\, x \neq \, -1/2)$ , હોય તો $z$ ની કેટલી કિમતો માટે ${\left| z \right|^n}\, = \,{z^2}{\left| z \right|^{n - 2}}\, + \,z{\left| z \right|^{n - 2}}\, + \,1\,.\,\left( {n \in N,n > 1} \right)$ થાય 

બધા $z \in C$ માટે જો $\left| z \right| = 1$ અને ${\mathop{\rm Re}\nolimits} \,z \ne 1$ હોય તો  $\alpha  \in R$ ના ઉકેલગણ મેળવો કે જેથી $w = \frac{{1 + \left( {1 - 8\alpha } \right)z}}{{1 - z}}$ એ શુધ્ધ કાલ્પનિક સંખ્યા થાય. 

  • [JEE MAIN 2018]

જો $Z$ અને $W$ એ સંકર સંખ્યા હોય જેથી  $\left| Z \right| = \left| W \right|,$ અને arg $Z$ એ  $Z$ નો મુખ્ય કોણાંક બતાવતું હોય.

વિધાન $1:$ જો arg $Z+$ arg $W = \pi ,$ તો  $Z = -\overline W $.

વિધાન $2:$ $\left| Z \right| = \left| W \right|,$ $\Rightarrow $ arg $Z-$ arg $\overline W = \pi .$

  • [AIEEE 2012]

$a$ એ વાસ્તવિક હોય તો , $(z + a)(\bar z + a)$= . . . .

જો $z_1, z_2  $ બે સંકર સંખ્યા હોય , તો $|{z_1} + \sqrt {z_1^2 - z_2^2} |$ $ + |{z_1} - \sqrt {z_1^2 - z_2^2} |$ = . . . .