4-1.Complex numbers
normal

$\theta$ ની કઈ વાસ્તવિક કિમતો માટે સમીકરણ  $\frac{{1 + i\,\cos \theta }}{{1 - 2i\cos \theta }}$ ની કિમત વાસ્તવિક કિમત થાય  $\left( {n \in I} \right)$ 

A

$\left( {2n + 1} \right)\pi $

B

$\left( {2n + 1} \right)\pi /2$

C

$2n\,\,\pi $

D

એક પણ નહી 

Solution

$\frac{1+i \cos \theta}{1-2 i \cos \theta}=\frac{(1+i \cos \theta)(1+2 i \cos \theta)}{(1-2 i \cos \theta)(1+2 i \cos \theta)}$

$=\frac{1-2 \cos ^{2} \theta+3 i \cos \theta}{1+4 \cos ^{2} \theta}$

is a real number only if $\frac{3 \cos \theta}{1+4 \cos ^{2} \theta}=0$

i.e. if $\cos \theta=0$

i.e. if $\theta=(2 n+1) \pi / 2, n \in I$

So $(b)$ is correct alternative.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.