If $|z|\, = 1$ and $\omega = \frac{{z - 1}}{{z + 1}}$ (where $z \ne - 1)$, then ${\mathop{\rm Re}\nolimits} (\omega )$ is
$0$
$ - \frac{1}{{|z + 1{|^2}}}$
$\left| {\frac{z}{{z + 1}}} \right|\,.\frac{1}{{|z + 1{|^2}}}$
$\frac{{\sqrt 2 }}{{|z + 1{|^2}}}$
If ${z_1}{\rm{ and }}{z_2}$ be complex numbers such that ${z_1} \ne {z_2}$ and $|{z_1}|\, = \,|{z_2}|$. If ${z_1}$ has positive real part and ${z_2}$ has negative imaginary part, then $\frac{{({z_1} + {z_2})}}{{({z_1} - {z_2})}}$may be
The argument of the complex number $ - 1 + i\sqrt 3 $ is ............. $^\circ$
Let $\bar{z}$ denote the complex conjugate of a complex number $z$ and let $i=\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation
$\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ is. . . . . .
If $z$ is a complex number, then $z.\,\overline z = 0$ if and only if
If $z_1, z_2 $ are any two complex numbers, then $|{z_1} + \sqrt {z_1^2 - z_2^2} |$ $ + |{z_1} - \sqrt {z_1^2 - z_2^2} |$ is equal to