If $|z|\, = 1$ and $\omega = \frac{{z - 1}}{{z + 1}}$ (where $z \ne - 1)$, then ${\mathop{\rm Re}\nolimits} (\omega )$ is
$0$
$ - \frac{1}{{|z + 1{|^2}}}$
$\left| {\frac{z}{{z + 1}}} \right|\,.\frac{1}{{|z + 1{|^2}}}$
$\frac{{\sqrt 2 }}{{|z + 1{|^2}}}$
Let $z$ satisfy $\left| z \right| = 1$ and $z = 1 - \vec z$.
Statement $1$ : $z$ is a real number
Statement $2$ : Principal argument of $z$ is $\frac{\pi }{3}$
Let $z_1$ and $z_2$ be any two non-zero complex numbers such that $3\left| {{z_1}} \right| = 4\left| {{z_2}} \right|$. If $z = \frac{{3{z_1}}}{{2{z_2}}} + \frac{{2{z_2}}}{{3{z_1}}}$ then
The conjugate of complex number $\frac{{2 - 3i}}{{4 - i}},$ is
If for $z=\alpha+i \beta,|z+2|=z+4(1+i)$, then $\alpha+\beta$ and $\alpha \beta$ are the roots of the equation
The conjugate of the complex number $\frac{{2 + 5i}}{{4 - 3i}}$ is