Find the modulus and argument of the complex number $\frac{1+2 i}{1-3 i}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $z=\frac{1+3 i}{1-3 i},$ then

$z=\frac{1+2 i}{1-3 i} \times \frac{1+3 i}{1+3 i}=\frac{1+3 i+2 i+6 i^{2}}{1^{2}+3^{2}}=\frac{1+5 i+6(-1)}{1+9}$

$=\frac{-5+5 i}{10}=\frac{-5}{10}+\frac{5 i}{10}=\frac{-1}{2}+\frac{1}{2} i$

Let $z=r \cos \theta+i r \sin \theta$

i.e., $r \cos \theta=\frac{-1}{2}$ and $r \sin \theta=\frac{1}{2}$

On squaring and adding, we obtain

$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\left(\frac{-1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}$

$\Rightarrow r^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$

$\Rightarrow r=\frac{1}{\sqrt{2}}$    $[\text { Conventionally, } r>0]$

$\therefore \frac{1}{\sqrt{2}} \cos \theta=\frac{-1}{2}$ and $\frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2}$

$\Rightarrow \cos \theta=\frac{-1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$

$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$      [As $\theta$ lies in the $II$ quadrant]

Therefore, the modulus and argument of the given complex number are $\frac{1}{\sqrt{2}}$ and $\frac{3 \pi}{4}$ respectively.

Similar Questions

${\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2}$ is equal to 

  • [AIEEE 2012]

Let $\bar{z}$ denote the complex conjugate of a complex number $z$ and let $i=\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation

$\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ is. . . . . .

  • [IIT 2022]

If the set $\left\{\operatorname{Re}\left(\frac{z-\bar{z}+z \bar{z}}{2-3 z+5 \bar{z}}\right): z \in C , \operatorname{Re}(z)=3\right\}$ is equal to the interval $(\alpha, \beta]$, then $24(\beta-\alpha)$ is equal to

  • [JEE MAIN 2023]

If $arg\, z < 0$ then $arg\, (-z)\, -arg(z)$ is equal to

If $Arg(z)$ denotes principal argument of a complex number $z$, then the value of expression $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ is