Find the modulus and argument of the complex number $\frac{1+2 i}{1-3 i}$
Let $z=\frac{1+3 i}{1-3 i},$ then
$z=\frac{1+2 i}{1-3 i} \times \frac{1+3 i}{1+3 i}=\frac{1+3 i+2 i+6 i^{2}}{1^{2}+3^{2}}=\frac{1+5 i+6(-1)}{1+9}$
$=\frac{-5+5 i}{10}=\frac{-5}{10}+\frac{5 i}{10}=\frac{-1}{2}+\frac{1}{2} i$
Let $z=r \cos \theta+i r \sin \theta$
i.e., $r \cos \theta=\frac{-1}{2}$ and $r \sin \theta=\frac{1}{2}$
On squaring and adding, we obtain
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\left(\frac{-1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}$
$\Rightarrow r^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$
$\Rightarrow r=\frac{1}{\sqrt{2}}$ $[\text { Conventionally, } r>0]$
$\therefore \frac{1}{\sqrt{2}} \cos \theta=\frac{-1}{2}$ and $\frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2}$
$\Rightarrow \cos \theta=\frac{-1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$
$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$ [As $\theta$ lies in the $II$ quadrant]
Therefore, the modulus and argument of the given complex number are $\frac{1}{\sqrt{2}}$ and $\frac{3 \pi}{4}$ respectively.
If $|{z_1}|\, = \,|{z_2}|$ and $arg\,\,\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \pi $, then ${z_1} + {z_2}$ is equal to
Argument of $ - 1 - i\sqrt 3 $ is
Lets $S=\{z \in C:|z-1|=1$ and $(\sqrt{2}-1)(z+\bar{z})-i(z-\bar{z})=2 \sqrt{2}\}$. Let $\mathrm{z}_1, \mathrm{z}_2$ $\in S$ be such that $\left|z_1\right|=\max _{z \in S}|z|$ and $\left|z_2\right|=\min _{z \in S}|z|$. Then $\left|\sqrt{2} z_1-z_2\right|^2$ equals :
Let $z$ and $w$ be the two non-zero complex numbers such that $|z|\, = \,|w|$ and $arg\,z + arg\,w = \pi $. Then $z$ is equal to
$|{z_1} + {z_2}|\, = \,|{z_1}| + |{z_2}|$ is possible if