4-1.Complex numbers
medium

જો $|z|\, = 1$ અને $\omega = \frac{{z - 1}}{{z + 1}}$ (કે જ્યાં $z \ne - 1)$, તો ${\mathop{\rm Re}\nolimits} (\omega )$= . . .

A

$0$

B

$ - \frac{1}{{|z + 1{|^2}}}$

C

$\left| {\frac{z}{{z + 1}}} \right|\,.\frac{1}{{|z + 1{|^2}}}$

D

$\frac{{\sqrt 2 }}{{|z + 1{|^2}}}$

(IIT-2003)

Solution

(a) $|z|\, = 1\, \Rightarrow \,|x + i\,y|\, = 1\, \Rightarrow \,{x^2} + {y^2} = 1$
$\omega = \frac{{z – 1}}{{z + 1}} = \frac{{(x – 1) + i\,y}}{{(x + 1) + i\,y}} \times \frac{{(x + 1) – i\,y}}{{(x + 1) – i\,y}}$
$ = \,\frac{{({x^2} + {y^2} – 1)}}{{{{(x + 1)}^2} + {y^2}}} + \frac{{2i\,y}}{{{{(x + 1)}^2} + {y^2}}} = \frac{{2i\,y}}{{{{(x + 1)}^2} + {y^2}}}$$(\because \,{x^2} + {y^2} = 1)$
${\mathop{\rm Re}\nolimits} \,(\omega ) = 0$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.