Let $z$ be a complex number such that $\left| z \right| + z = 3 + i$ (where $i = \sqrt { - 1} $). Then $\left| z \right|$ is equal to

  • [JEE MAIN 2019]
  • A

    $\frac{{\sqrt {34} }}{3}$

  • B

    $\frac{5}{3}$

  • C

    $\frac{{\sqrt {41} }}{4}$

  • D

    $\frac{5}{4}$

Similar Questions

Let $z$ and $w$ be the two non-zero complex numbers such that $|z|\, = \,|w|$ and $arg\,z + arg\,w = \pi $. Then $z$ is equal to

  • [IIT 1995]

If ${z_1}$ and ${z_2}$ are two complex numbers satisfying the equation $\left| \frac{z_1 +z_2}{z_1 - z_2} \right|=1$, then $\frac{{{z_1}}}{{{z_2}}}$ is a number which is

$(z + a)(\bar z + a)$, where $a$ is real, is equivalent to

Let $z$ be a purely imaginary number such that ${\mathop{\rm Im}\nolimits} (z) < 0$. Then $arg\,(z)$ is equal to

Amplitude of $\left( {\frac{{1 - i}}{{1 + i}}} \right)$ is