જો $arg\,(z) = \theta $, તો $arg\,(\overline z ) = $
$\theta $
$ - \theta $
$\pi - \theta $
$\theta - \pi $
જો $z_1, z_2, z_3$ $\in$ $C$ એવા મળે કે જેથી $|z_1| = |z_2| = |z_3| = 2$, હોય તો સમીકરણ $|z_1 - z_2|.|z_2 - z_3| + |z_3 - z_1|.|z_1 - z_2| + |z_2 - z_3||z_3 - z_1|$ ની મહત્તમ કિમત મેળવો
જો $z_1, z_2 \in C$ એવા મળે કે જેથી $| z_1 + z_2 |= \sqrt 3$ અને $|z_1| = |z_2| = 1,$ થાય તો $|z_1 - z_2|$ ની કિમત મેળવો
જો $z_{1}=2-i, z_{2}=1+i,$ તો $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$ શોધો.
$a$ એ વાસ્તવિક હોય તો , $(z + a)(\bar z + a)$= . . . .
જો સંકર સંખ્યાઓ $(x -2y) + i(3x -y)$ અને $(2x -y) + i(x -y + 6)$ એ એકબીજાને અનુબધ્ધ હોય તો $|x + iy|$ ની કિમત મેળવો $(x,y \in R)$