- Home
- Standard 12
- Mathematics
5. Continuity and Differentiation
normal
If $f: \mathrm{R} \rightarrow \mathrm{R}$ is a twice differentiable function such that $f^{\prime \prime}(x)>0$ for all $x \in \mathrm{R}$, and $f\left(\frac{1}{2}\right)=\frac{1}{2}, f(1)=1$, then
A
$f^{\prime}(1) \leq 0$
B
$0 < f^{\prime}(1) \leq \frac{1}{2}$
C
$\frac{1}{2} < f^{\prime}(1) \leq 1$
D
$f^{\prime}(1)>1$
(IIT-2017)
Solution
Let $h(x)=f(x)-x$
$\mathrm{h}\left(\frac{1}{2}\right)=0=\mathrm{h}(1)$
$\Rightarrow \mathrm{h}^{\prime}(\alpha)=0$ for some $\alpha \in(0,1)$ by rolle's theorem $f^{\prime}(\alpha)=1$
as $f^{\prime \prime}(x)>0 \Rightarrow f^{\prime}(x)$ is increasing
$\therefore f^{\prime}(1)>f^{\prime}(\alpha)$
$f^{\prime}(1)>1$
Standard 12
Mathematics