Gujarati
Hindi
5. Continuity and Differentiation
normal

If $f: \mathrm{R} \rightarrow \mathrm{R}$ is a twice differentiable function such that $f^{\prime \prime}(x)>0$ for all $x \in \mathrm{R}$, and $f\left(\frac{1}{2}\right)=\frac{1}{2}, f(1)=1$, then

A

$f^{\prime}(1) \leq 0$

B

$0 < f^{\prime}(1) \leq \frac{1}{2}$

C

$\frac{1}{2} < f^{\prime}(1) \leq 1$

D

$f^{\prime}(1)>1$

(IIT-2017)

Solution

Let $h(x)=f(x)-x$

$\mathrm{h}\left(\frac{1}{2}\right)=0=\mathrm{h}(1)$

$\Rightarrow \mathrm{h}^{\prime}(\alpha)=0$ for some $\alpha \in(0,1)$ by rolle's theorem $f^{\prime}(\alpha)=1$

as $f^{\prime \prime}(x)>0 \Rightarrow f^{\prime}(x)$ is increasing

$\therefore f^{\prime}(1)>f^{\prime}(\alpha)$

$f^{\prime}(1)>1$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.