- Home
- Standard 12
- Mathematics
5. Continuity and Differentiation
hard
Let $f$ be any function continuous on $[\mathrm{a}, \mathrm{b}]$ and twice differentiable on $(a, b) .$ If for all $x \in(a, b)$ $f^{\prime}(\mathrm{x})>0$ and $f^{\prime \prime}(\mathrm{x})<0,$ then for any $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ $\frac{f(\mathrm{c})-f(\mathrm{a})}{f(\mathrm{b})-f(\mathrm{c})}$ is greater than
A
$\frac{b+a}{b-a}$
B
$\frac{b-c}{c-a}$
C
$\frac{c-a}{b-c}$
D
$1$
(JEE MAIN-2020)
Solution

it is clear from graph that $\mathrm{m}_{1}>\mathrm{m}_{2}$
$\Rightarrow \quad \frac{f(\mathrm{c})-f(\mathrm{a})}{\mathrm{c}-\mathrm{a}}>\frac{f(\mathrm{b})-f(\mathrm{c})}{\mathrm{b}-\mathrm{c}}$
$\Rightarrow \quad \frac{f(c)-f(a)}{f(b)-f(c)}>\frac{c-a}{b-c}$
Standard 12
Mathematics