Let $f$ be any function continuous on $[\mathrm{a}, \mathrm{b}]$ and twice differentiable on $(a, b) .$ If for all $x \in(a, b)$ $f^{\prime}(\mathrm{x})>0$ and $f^{\prime \prime}(\mathrm{x})<0,$ then for any $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ $\frac{f(\mathrm{c})-f(\mathrm{a})}{f(\mathrm{b})-f(\mathrm{c})}$ is greater than
$\frac{b+a}{b-a}$
$\frac{b-c}{c-a}$
$\frac{c-a}{b-c}$
$1$
If the function $f(x) = {x^3} - 6{x^2} + ax + b$ satisfies Rolle’s theorem in the interval $[1,\,3]$ and $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$, then $a =$ ..............
Verify Mean Value Theorem, if $f(x)=x^{2}-4 x-3$ in the interval $[a, b],$ where $a=1$ and $b=4$
Let $f(x)$ satisfy all the conditions of mean value theorem in $[0, 2]. $ If $ f (0) = 0 $ and $|f'(x)|\, \le {1 \over 2}$ for all $x$ in $[0, 2]$ then
A value of $c$ for which the conclusion of mean value the theorem holds for the function $f(x) = log{_e}x$ on the interval $[1, 3]$ is
If from mean value theorem, $f'({x_1}) = {{f(b) - f(a)} \over {b - a}}$, then