5. Continuity and Differentiation
medium

If $f$ and $g$ are differentiable functions in $[0, 1]$ satisfying $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ and $f\left( 1 \right) = 6,$ then for some $c \in \left] {0,1} \right[$  . .

A

$f'\left( c \right) = g'\left( c \right)$

B

$f'\left( c \right) = 2g'\left( c \right)$

C

$2f'\left( c \right) = g'\left( c \right)$

D

$2f'\left( c \right) = 3g'\left( c \right)$

(JEE MAIN-2014)

Solution

$2 g^{\prime}(c)=f^{\prime}(c)$

$=2\left(\frac{g(1)-g(0)}{1-0}\right)=\left(\frac{f(1)-f(0)}{1-0}\right)$

$=2\left(\frac{2-0}{1}\right)=\left(\frac{6-2}{1}\right) \Rightarrow 4=4$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.