- Home
- Standard 12
- Mathematics
5. Continuity and Differentiation
medium
If $f$ and $g$ are differentiable functions in $[0, 1]$ satisfying $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ and $f\left( 1 \right) = 6,$ then for some $c \in \left] {0,1} \right[$ . .
A
$f'\left( c \right) = g'\left( c \right)$
B
$f'\left( c \right) = 2g'\left( c \right)$
C
$2f'\left( c \right) = g'\left( c \right)$
D
$2f'\left( c \right) = 3g'\left( c \right)$
(JEE MAIN-2014)
Solution
$2 g^{\prime}(c)=f^{\prime}(c)$
$=2\left(\frac{g(1)-g(0)}{1-0}\right)=\left(\frac{f(1)-f(0)}{1-0}\right)$
$=2\left(\frac{2-0}{1}\right)=\left(\frac{6-2}{1}\right) \Rightarrow 4=4$
Standard 12
Mathematics