If $z = \cos \frac{\pi }{6} + i\sin \frac{\pi }{6}$ then

  • A

    $|z|\, = 1,\,\,\,\,arg\,z = \frac{\pi }{4}$

  • B

    $|z|\, = 1,arg\,z = \frac{\pi }{6}$

  • C

    $|z|\, = \frac{{\sqrt 3 }}{2},\,arg\,z = \frac{{5\pi }}{{24}}$

  • D

    $|z|\, = \frac{{\sqrt 3 }}{2},\,\,arg\,z = {\tan ^{ - 1}}\frac{1}{{\sqrt 2 }}$

Similar Questions

Let $z_1$ and $z_2$ be two complex number such that $z_1$ $+z_2=5$ and $z_1^3+z_2^3=20+15 i$. Then $\left|z_1^4+z_2^4\right|$ equals-

  • [JEE MAIN 2024]

The inequality $|z - 4|\, < \,|\,z - 2|$represents the region given by

  • [IIT 1982]

If $z_1$ is a point on $z\bar{z} = 1$ and $z_2$ is another point on $(4 -3i)z + (4 + 3i)z -15 = 0$, then $|z_1 -z_2|_{min}$ is (where $ i = \sqrt { - 1}$ )

The argument of the complex number $\sin \,\frac{{6\pi }}{5}\, + \,i\,\left( {1\, + \,\cos \,\frac{{6\pi }}{5}} \right)$ is 

If $z = x + iy$ satisfies $|z|-2=0$ and $|z-i|-|z+5 i|=0$, then

  • [JEE MAIN 2022]