- Home
- Standard 11
- Mathematics
4-1.Complex numbers
normal
If $z = \cos \frac{\pi }{6} + i\sin \frac{\pi }{6}$ then
A
$|z|\, = 1,\,\,\,\,arg\,z = \frac{\pi }{4}$
B
$|z|\, = 1,arg\,z = \frac{\pi }{6}$
C
$|z|\, = \frac{{\sqrt 3 }}{2},\,arg\,z = \frac{{5\pi }}{{24}}$
D
$|z|\, = \frac{{\sqrt 3 }}{2},\,\,arg\,z = {\tan ^{ - 1}}\frac{1}{{\sqrt 2 }}$
Solution
(b)$z = \cos \frac{\pi }{6} + i\sin \frac{\pi }{6} = \frac{{\sqrt 3 }}{2} + \frac{i}{2}$
$\therefore \,\,|z|\, = \sqrt {\frac{3}{4} + \frac{1}{4}} = 1$
and $arg\,(z) = {\tan ^{ – 1}}\,\left( {\frac{y}{x}} \right) = {\tan ^{ – 1}}\left( {\frac{{1/2}}{{\sqrt 3 /2}}} \right) = {\tan ^{ – 1}}\left( {\frac{1}{{\sqrt 3 }}} \right)$
$ \Rightarrow \,\,arg(z)\, = {\tan ^{ – 1}}\left( {\tan \frac{\pi }{6}} \right) = \frac{\pi }{6}$.
Standard 11
Mathematics