Gujarati
4-1.Complex numbers
normal

Let $S$ be the set of all complex numbers $z$ satisfying $\left|z^2+z+1\right|=1$. Then which of the following statements is/are $TRUE$?

$(A)$ $\left|z+\frac{1}{2}\right| \leq \frac{1}{2}$ for all $z \in S$  $(B)$ $|z| \leq 2$ for all $z \in S$

$(C)$ $\left|z+\frac{1}{2}\right| \geq \frac{1}{2}$ for all $z \in S$  $(D)$ The set $S$ has exactly four elements

A

$A,C$

B

$B,C$

C

$B,D$

D

$A,D$

(IIT-2020)

Solution

$\left|z^2+z+1\right|=1$

$\Rightarrow  \left|\left(z+\frac{1}{2}\right)^2+\frac{3}{4}\right|=1$

$\Rightarrow  \left|\left(z+\frac{1}{2}\right)^2+\frac{3}{4}\right| \leq\left|z+\frac{1}{2}\right|^2+\frac{3}{4}$

$\Rightarrow  1 \leq\left|z+\frac{1}{2}\right|^2+\frac{3}{4} \Rightarrow\left|\left(z+\frac{1}{2}\right)\right|^2 \geq \frac{1}{4}$

$\Rightarrow  \left|z+\frac{1}{2}\right| \geq \frac{1}{2}$

$\text { also }  \left|\left(z^2+z\right)+1\right|=1 \geq|| z^2+z|-1|$

$\Rightarrow  \left|z^2+z\right|-1 \leq 1$

$\Rightarrow  \left|z^2+z\right| \leq 2$

$\Rightarrow  \left\|z^2|-| z\right\| \leq\left|z^2+z\right| \leq 2$

$\Rightarrow  \left|r^2-r\right| \leq 2$

$\Rightarrow  \quad r =|z| \leq 2 ; \forall z \in S$

Also we can always find root of the equation $z^2+z+1=e^{i \theta} ; \forall \theta \in R$

Hence set ' $S$ ' is infinite

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.