Let $S$ be the set of all complex numbers $z$ satisfying $\left|z^2+z+1\right|=1$. Then which of the following statements is/are $TRUE$?
$(A)$ $\left|z+\frac{1}{2}\right| \leq \frac{1}{2}$ for all $z \in S$ $(B)$ $|z| \leq 2$ for all $z \in S$
$(C)$ $\left|z+\frac{1}{2}\right| \geq \frac{1}{2}$ for all $z \in S$ $(D)$ The set $S$ has exactly four elements
$A,C$
$B,C$
$B,D$
$A,D$
Find the complex number z satisfying the equations $\left| {\frac{{z - 12}}{{z - 8i}}} \right| = \frac{5}{3},\left| {\frac{{z - 4}}{{z - 8}}} \right| = 1$
If $z = \frac{{ - 2}}{{1 + \sqrt 3 \,i}}$ then the value of $arg\,(z)$ is
If the set $\left\{\operatorname{Re}\left(\frac{z-\bar{z}+z \bar{z}}{2-3 z+5 \bar{z}}\right): z \in C , \operatorname{Re}(z)=3\right\}$ is equal to the interval $(\alpha, \beta]$, then $24(\beta-\alpha)$ is equal to
If $z$ is a complex number, then $(\overline {{z^{ - 1}}} )(\overline z ) = $
If $|z_1|=1, \, |z_2| =2, \,|z_3|=3$ and $|9z_1z_2 + 4z_1z_3+z_2z_3| =12$ then the value of $|z_1+z_2+z_3|$ is equal to :-