If $3^x=4^{x-1}$, then $x=$
$(A)$ $\frac{2 \log _3 2}{2 \log _3 2-1}$ $(B)$ $\frac{2}{2-\log _2 3}$ $(C)$ $\frac{1}{1-\log _4 3}$ $(D)$ $\frac{2 \log _2 3}{2 \log _2 3-1}$
$(A,C,D)$
$(A,B,D)$
$(A,B,C)$
$(B,C,D)$
If $n = 1983!$, then the value of expression $\frac{1}{{{{\log }_2}n}} + \frac{1}{{{{\log }_3}n}} + \frac{1}{{{{\log }_4}n}} + ....... + \frac{1}{{{{\log }_{1983}}n}}$ is equal to
Let $\left(x_0, y_0\right)$ be the solution of the following equations $(2 x)^{\ln 2} =(3 y)^{\ln 3}$ $3^{\ln x} =2^{\ln y}$ . Then $x_0$ is
If $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ then
If $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ which one of the following is correct
If ${\log _{10}}x = y,$ then ${\log _{1000}}{x^2} $ is equal to