Gujarati
Basic of Logarithms
normal

The product of all positive real values of $x$ satisfying the equation $x^{\left(16\left(\log _5 x\right)^3-68 \log _5 x\right)}=5^{-16}$is. . . . .

A

$0$

B

$1$

C

$4$

D

$5$

(IIT-2022)

Solution

$x^{16\left(\log _5 x\right)^3-68 \log _5 x}=5^{-16}$

Take log to the base 5 on both sides and put $\log _5 x=t$

$16 t^4-68 t^2+16=0$

$\Rightarrow 4 t^4-17 t^2+4=0\left\{\begin{array}{l}t_1 \\ t_2 \\ t_3 \\ t_4\end{array}\right.$

$t_1+t_2+t_3+t_4=0$

$\log _5 x_1+\log _5 x_2+\log _5 x_3+\log _5 x_4=0$

$x_1 x_2 x_3 x_4=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.