- Home
- Standard 11
- Mathematics
If ${z_1} = a + ib$ and ${z_2} = c + id$ are complex numbers such that $|{z_1}| = |{z_2}| = 1$ and $R({z_1}\overline {{z_2}} ) = 0,$ then the pair of complex numbers ${w_1} = a + ic$ and ${w_2} = b + id$ satisfies
$|{w_1}| = 1$
$|{w_2}| = 1$
$R({w_1}\overline {{w_2}} ) = 0,$
All the above
Solution
(d)Since $|{z_1}| = |{z_2}| = 1$, we have
${z_1} = \cos {\theta _1} + i\sin {\theta _1},{z_2} = \cos {\theta _2} + i\sin {\theta _2}$
where ${\theta _1} = arg({z_1})$ and ${\theta _2} = arg({z_2})$
Also, ${z_1} = a + ib$ and ${z_2} = c + id.$
Therefore$a = \cos {\theta _1}$,$b = \sin {\theta _1},c = \cos {\theta _2}$ and $d = \sin {\theta _2}$
Also, $R({z_1}{\overline z _2}) = 0$
==> $R[(\cos {\theta _1} + i\sin {\theta _1})(\cos {\theta _2} – i\sin {\theta _2})] = 0$
==> $R[(\cos ({\theta _1} – {\theta _2}) + i\sin ({\theta _1} – {\theta _2})] = 0$
==> $\cos ({\theta _1} – {\theta _2}) = 0$
==> ${\theta _1} – {\theta _2} = \frac{\pi }{2}$
==> ${\theta _1} = {\theta _2} + \frac{\pi }{2}$
Now, ${w_1} = a + ic = \cos {\theta _1} + i\cos {\theta _2}$$ = \cos {\theta _1} + i\sin {\theta _1}$
==> $|{w_1}| = 1$
Similarly, $|{w_2}| = 1$
Next ${w_1}{\overline w _2} = (\cos {\theta _1} + i\sin {\theta _1})(\cos {\theta _2} – i\sin {\theta _2})$
$ = \cos ({\theta _1} – {\theta _2}) + i\sin ({\theta _1} – {\theta _2})$
==> $|{w_1}{\overline w _2}| = 1$
Finally, $R({\overline w _1}{w_2}) = R({w_2}{\overline w _1})$
$ = R[(\cos {\theta _2} + i\sin {\theta _2})(\cos {\theta _1} – i\sin {\theta _1})]$
$ = R[\cos ({\theta _2} – {\theta _1}) + i\sin ({\theta _2} – {\theta _1})]$
$ = \cos ({\theta _2} – {\theta _1}) = \cos \left( {\frac{{ – \pi }}{2}} \right) = 0$