Let $z$be a purely imaginary number such that ${\mathop{\rm Im}\nolimits} \,(z) > 0$. Then $arg(z)$ is equal to

  • A

    $\pi $

  • B

    $\frac{\pi }{2}$

  • C

    $0$

  • D

    $ - \frac{\pi }{2}$

Similar Questions

The conjugate of $\frac{{{{(2 + i)}^2}}}{{3 + i}},$ in the form of $a + ib$, is

$|{z_1} + {z_2}|\, = \,|{z_1}| + |{z_2}|$ is possible if

If ${z_1}.{z_2}........{z_n} = z,$ then $arg\,{z_1} + arg\,{z_2} + ....$+$arg\,{z_n}$ and $arg$$z$ differ by a

The argument of the complex number $\sin \,\frac{{6\pi }}{5}\, + \,i\,\left( {1\, + \,\cos \,\frac{{6\pi }}{5}} \right)$ is 

Let $z_1, z_2 \in C$ such that $| z_1 + z_2 |= \sqrt 3$ and $|z_1| = |z_2| = 1,$ then the value of $|z_1 - z_2|$ is